Quantum Gibbs ensemble Monte Carlo

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium

This work describes an implementation of canonical and Gibbs ensemble Monte Carlo simulations on graphics processing units (GPUs). The pair-wise energy calculations, which consume the majority of the computational effort, are parallelized using the energetic decomposition algorithm. While energetic decomposition is relatively inefficient for traditional CPU-bound codes, the algorithm is ideally...

متن کامل

Extended Ensemble Monte Carlo

" Extended Ensemble Monte Carlo " is a generic term that indicates a set of algorithms which are now being popular in a variety of fields in physics and statistical information processing. Exchange Monte Carlo (Metropolis-Coupled Chain, Parallel Tempering), Simulated Tempering (Expanded Ensemble Monte Carlo), and Multicanonical Monte Carlo (Adaptive Umbrella Sampling) are typical members of thi...

متن کامل

Monte Carlo Based Ensemble Forecasting

Ensemble forecasting involves the use of several integrations of a numerical model. Even if this model is assumed to be known, ensembles are needed due to uncertainty in initial conditions. The ideas discussed in this paper incorporate aspects of both analytic model approximations and Monte Carlo arguments to gain some eeciency in the generation and use of ensembles. EEciency is gained through ...

متن کامل

Markov Chain Monte Carlo and Gibbs Sampling

A major limitation towards more widespread implementation of Bayesian approaches is that obtaining the posterior distribution often requires the integration of high-dimensional functions. This can be computationally very difficult, but several approaches short of direct integration have been proposed (reviewed by Smith 1991, Evans and Swartz 1995, Tanner 1996). We focus here on Markov Chain Mon...

متن کامل

Markov Chain Monte Carlo and Gibbs Sampling

A major limitation towards more widespread implementation of Bayesian approaches is that obtaining the posterior distribution often requires the integration of high-dimensional functions. This can be computationally very difficult, but several approaches short of direct integration have been proposed (reviewed by Smith 1991, Evans and Swartz 1995, Tanner 1996). We focus here on Markov Chain Mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2014

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.4895974